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he quantum approximate optimization algorithm (QAOA), later generalized to the quantum alternating ~ An important step in proving the convergence of the algorithm to the optimal solution is showing that all

operator ansatz, has been proposed as a promising technique for approximately solving classically hard  in-constraint states can be accessed using the transition operators. We developed an algorithm to
problems using quantum computing. The current methods for applying QAOA with constraints have systematically move from one state to another, as visualized in tables below. We show that for any BILP
focused on either introducing a penalty term to the cost function or using an "XY"-mixer, which only problem of this form, the state, |7),which has ones as far up and to the left in the table as possible, can
works for some constraints. In this project, we propose a general technique for procedurally generating  always be reached through the composition of a sequence of S and F operators.
QAOA mixers for constrained optimization problems with a class of constraints that generalize the < > 172)
simpler constraints considered in previous works. We determine a small set of rules that allow for T E . 111 (J101001) (I111100) 22,8 (1101110)) 2 (l011010))
transitions between all in-constraint states and translate these into a set of operators. We use the sum 2) o 2 |m) =1]101001) <> [0 [0 |  Sus S Ss.6 S
of these state transition operators as the mixing Hamiltonian for QAOA, which restricts the solutions to O e 10 (1100110)) .28 (110101)) b2 (1100111)) T2 (lo10011))
within the constraint space.
12) 1OSL‘O‘ 0 1 1 11 7) .
] 0101110>]<—> 0 1 — 1 0 ==~ 1 0+~ 0 0 —-— 0 0 <—>6101001>J ‘a G |m> > ‘a
anfinniil AR A
*h - Ex: minimizing cost of docking airplanes. Experimental Results
o Ugr) | Uy(BY) Uelrp) | [UnB) | }W' B) Constraint: one airplane per bay
4, We evaluate the empirical performance of the mixer via classical simulations of QAOA. We use metrics
{ > Max (C) —J > — arg min Z C: 7 such as approximation ratio, r = Cﬂizx__(’é”m”n and the probability of obtaining the optimal solution, Zopt
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Constraint Preserving Mixers for Binary Integer Linear Programming (BILP) Quantum circuit diagram of a mixer within a single  Approximation Ratio landscape for 1-layer QAOA
layer of QAOA for the for the constraint N=6, k=3:
We develop a set of state transition operators similar to those shown below to solve BILP problems with 11 + 279 + 323 + T4 + 275 + 316 = b
a single constraint equation with N variables, whose coetficients are integers from 1 to £, repeating. Appromixation Ratio, 7 vs. Layers of QAOA, p Probalilityof . vs. Layers of QADA, »
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