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1 OVERVIEW

We created a zero-knowledge-proof for graph 3-coloring. We cre-
ated a system where a user, Alice, can send a graph to another user,
Bob. Then, without revealing information about a specific coloring,
Alice can prove to Bob that the graph is 3-colorable.

We created a terminal application with a server and a client.
The server has access to several graphs and claims to know their
corresponding colorings. The client can then connect to the server.
The client tells the server which graph they would like to have
proven for them.

2 PROTOCOL
The protocol is as follows:

o Alice begins with a graph, G = (V,E) and a coloring, ¢ :
V —{0,1,2}

o Alice randomly samples a permutation  : {0, 1,2} — {0, 1, 2}
and for each vertex, v € V a random bitstring r, < ${0, l})L

e For each vertex, v € V Alice will then commit

¢y = Comm(n($(v)); 1) = H(ry||m(P(0)))

and send {cy }yey to Bob.

e Bob can then choose a random edge (u,v) € E and send it
to Alice as a challenge

o To meet the challenge, Alice sends back (¢ (u)), 7(¢(v)) as
well as ry, and ry

e Bob can then verify that the coloring is valid by checking
that 7(¢(u)) # 7($(v)). He can also ensure that the coloring
corresponds to Alice’s original commitment by checking that
H(ryllm(¢(u))) = cu and H(ry|I7(¢(0))) = co.

The probability of Alice always selecting a coloring in which
m(P(u)) # n(¢p(v)) is very low and decreases in the number of
trials (see section 4). Therefore for any fixed p, Bob can perform
enough trials with Alice to ensure that the probability that Alice is
cheating is less than p.

3 DESIGN CHOICES AND IMPLEMENTATION

The three main components of the codebase are challenger.py,
prover.py, and the graph driver, graph_driver.py. The graph
driver is where we factor out all logic related to generating the
commit, verifying valid colorings, visualization, etc. The challenger
and prover act as the client and server, respectively. We use TCP
sockets to act as a mean of communication. Each program imple-
ments the described protocol in Section 2 directly, with serialization
and deserialization handled through the pickle library. To hash,
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we used hashlib to use SHA256, and the secrets library to gen-
erate random bitstrings using the builtin randbits. We felt that
this codebase structure was the most natural for a protocol of this
type, and is consistent with what we have seen in past projects.
The main (relevant) difference is the lack of a network driver, but
this was handled directly with the socket library that implements
everything for us.

In addition, we wanted the command line tool to be as user-
friendly as possible. To do this, we used the argparse library to
allow users to add both required and optional arguments.

prover.py takes in up to 4 arguments. graph and honest are re-
quired arguments that specify which graph the prover will be using
and whether the prover will attempt to cheat the challenger by se-
lecting a valid coloring or not. The current available graphs/colorings
are K3 and the Petersen graph but this is easily extendable by adding
more graphs to the example_graphs.py file. In addition, the user
can also choose whether to enable —show to visualize the graph
and its coloring as well as —verbose, which prints out additional
information as the protocol is executed.

challenger.py, takes in a variable number of arguments. Just
as in prover.py, the user must specify the graph they want to work
with. Then, they can also choose to either specify —-ntrials, which
will execute the protocol n times on random endges, or they can
specify —u and -v to choose a specific edge to run the protocol on.
In either case, the challenger will then execute the chosen protocol
and tell the user whether the graph’s coloring could be verified.

4 RESULTS

The results of this experiment were quite positive, as we got the
results that we expected. We made sure to test for false positives as
well, which we demonstrate in our presentation recording. Again,
the ZKP is unable to leave the challenger 100% confident, but we
know that confidence grows exponentially. As we demonstrate
in Figure 1, a dishonest prover is unable to convince a challenger
with 1000 challenges, so even though we can’t guarantee that it
safeguards against false positives (for any n trials), it’s fairly efficient
ot get the result with high probability. After this, it was mainly
stress testing by varying the number of vertices and the number of
trials, and each experiment was successful.

5 CHALLENGES

The main challenge of this project was getting used to the different
libraries we were importing and having them work in sync. For
example, having little networking background, we took a lot of time
reading and catching up on networking basics and familiarizing
ourselves with different protocols and error handling. Aside from
this, the most difficult aspect from a technical point of view was
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Figure 1: A screenshot of the terminal from the prover and
challenger POV.
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Figure 2: Gadget graph for 3-SAT Problem

implementing the verification logic in the graph APIL Other than
these two points, the rest of the project went fairly smoothly.

6 FUTURE WORK

We were able to successfully implement our stretch goal for this
project as well, which were to consider arbitrary n-colorings (rather
than just 3-colorings). On top of this, we spent some time making
the interface more user friendly and added a lot of options on the
client side for being able to try out the ZKP.

If we had more time, we would have loved to get our other stretch
goal to work, which was to add more visualization and support for
3-SAT. The connection here is that it is possible to get a polynomial
time reduction from 3-SAT to 3-coloring using gadgets. The idea is
that the clause can be represented as a graph, and by augmenting
it with gadgets, it is possible to force a satisfying assignment to be
equivalent to a valid 3-coloring of the resulting graph. An example
of such a graph is below. The idea for future work, then, would be
to automate the construction of such a gadget graph and then apply
our already implemented ZKP to immediately get a ZKP for the
3SAT problem. This opens up a way to extend this to many other
NP-complete problems, in particular those with "nice" reductions.

7 RELEVANT QUESTIONS

The main shortcoming of this algorithm is with the number of
trials it takes to reach high confidence levels. As seen in class, the
probability of not catching a cheating Prover is

-m)

where n is the number of trials and |E| is the number of edges in
the graph. Using n = A|E| gives

1= 1) < e
( - m) ~ (1/e)
In order to be confident with probability p that the prover is not
cheating, then, this requires A  —In(1 — p). Then we require
O(|E|In1/(1 = p)) trials, or O(|V|?1n1/(1 - p)) as |E| is roughly
O(|V|)2. This quickly grows out of hand as |V| grows large, es-
pecially since we need to apply the commitment scheme/random
permutation generation for each trial. As a result, there are a few
natural questions that come to mind:

(1) Is there a way to optimize the Graph 3-Coloring ZKP in its
current form?

(2) Are there other ZKPs with better probabilistic guarantees
than the current ZKP?

Of course, the solvability of these questions and their hardness
are likely to be connected with the fact that Graph 3-Coloring is
NP-hard. We can then consider the same questions in a quantum
computation setting as well.

Figure 3: A graph theorist’s favorite example of a 3-colorable
graph: the Petersen graph.
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